* Step 1: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: f(x,x,y) -> x f(x,y,y) -> y f(x,y,g(y)) -> x f(g(x),x,y) -> y - Signature: {f/3} / {g/1} - Obligation: innermost runtime complexity wrt. defined symbols {f} and constructors {g} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(x,x,y) -> c_1() f#(x,y,y) -> c_2() f#(x,y,g(y)) -> c_3() f#(g(x),x,y) -> c_4() Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(x,x,y) -> c_1() f#(x,y,y) -> c_2() f#(x,y,g(y)) -> c_3() f#(g(x),x,y) -> c_4() - Weak TRS: f(x,x,y) -> x f(x,y,y) -> y f(x,y,g(y)) -> x f(g(x),x,y) -> y - Signature: {f/3,f#/3} / {g/1,c_1/0,c_2/0,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {g} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f#(x,x,y) -> c_1() f#(x,y,y) -> c_2() f#(x,y,g(y)) -> c_3() f#(g(x),x,y) -> c_4() * Step 3: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(x,x,y) -> c_1() f#(x,y,y) -> c_2() f#(x,y,g(y)) -> c_3() f#(g(x),x,y) -> c_4() - Signature: {f/3,f#/3} / {g/1,c_1/0,c_2/0,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {g} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:f#(x,x,y) -> c_1() 2:S:f#(x,y,y) -> c_2() 3:S:f#(x,y,g(y)) -> c_3() 4:S:f#(g(x),x,y) -> c_4() The dependency graph contains no loops, we remove all dependency pairs. * Step 4: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {f/3,f#/3} / {g/1,c_1/0,c_2/0,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {g} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))